skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chitre, Bhushan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. [Context and motivation] Trace matrices are lynch pins for the development of mission- and safety-critical software systems and are useful for all software systems, yet automated methods for recovering trace links are far from perfect. This limitation makes the job of human analysts who must vet recovered trace links more difficult. [Question/Problem] Earlier studies suggested that certain analyst behaviors when performing trace recovery tasks lead to decreased accuracy of recovered trace relationships. We propose a three-step experimental study to: (a) determine if there really are behaviors that lead to errors of judgment for analysts, (b) enhance the requirements tracing software to curtail such behaviors, and (c) determine if curtailing such behaviors results in increased accuracy. [Principal ideas/results] We report on a preliminary study we undertook in which we modified the user interface of RETRO.NET to curtail two behaviors indicated by the earlier work. We report on observed results. [Contributions] We describe and discuss a major study of potentially unwanted analyst behaviors and present results of a preliminary study toward determining if curbing these behaviors with enhancements to tracing software leads to fewer human errors. 
    more » « less
  2. Network security devices intercept, analyze and act on the traffic moving through the network to enforce security policies. They can have adverse impact on the performance, functionality, and privacy provided by the network. To address this issue, we propose a new approach to network security based on the concept of short-term on-demand security exceptions. The basic idea is to bring network providers and (trusted) users together by (1) implementing coarse-grained security policies in the traditional way using conventional in-band security approaches, and (2) handling special cases policy exceptions in the control plane using user/application-supplied information. By divulging their intent to network providers, trusted users can receive better service. By allowing security exceptions, network providers can focus inspections on general (untrusted) traffic. We describe the design of an on-demand security exception mechanism and demonstrate its utility using a prototype implementation that enables high-speed big-data transfer across campus networks. Our experiments show that the security exception mechanism can improve the throughput of flows by trusted users significantly. 
    more » « less
  3. The emergence of big data has created new challenges for researchers transmitting big data sets across campus networks to local (HPC) cloud resources, or over wide area networks to public cloud services. Unlike conventional HPC systems where the network is carefully architected (e.g., a high speed local interconnect, or a wide area connection between Data Transfer Nodes), today's big data communication often occurs over shared network infrastructures with many external and uncontrolled factors influencing performance. This paper describes our efforts to understand and characterize the performance of various big data transfer tools such as rclone, cyberduck, and other provider-specific CLI tools when moving data to/from public and private cloud resources. We analyze the various parameter settings available on each of these tools and their impact on performance. Our experimental results give insights into the performance of cloud providers and transfer tools, and provide guidance for parameter settings when using cloud transfer tools. We also explore performance when coming from HPC DTN nodes as well as researcher machines located deep in the campus network, and show that emerging SDN approaches such as the VIP Lanes system can deliver excellent performance even from researchers' machines. 
    more » « less